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1. Introduction

With the rapid development of science and technology, applica-
tion of high dependability safeguard techniques have improved the 
performance of modern systems greatly on the one hand, but increased 
the complexity of these systems on the other hand, which significantly 
raises some challenges in fault diagnosis. These challenges are failure 
dependency of components and epistemic uncertainty. Usually, some 
methods of fault tolerance are used to improve the system reliability. 
The behaviours of components in this system, such as failure prior-
ity, functional dependent failures, and sequentially dependent failures 
should be taken into account. In addition, high reliability makes it 
extremely difficult to obtain complete fault data because these sys-
tems may still be in the early life cycle, which results in the epistemic 
uncertainty. Thus, the work of fault diagnosis has attracted more at-
tention than before. The aim of a fault diagnosis system is to quickly 
detect and identify the root causes of these failures based on some in-

formation such as sensors data and operator experience by using some 
models and algorithms. Several efficient fault diagnosis approaches 
have been proposed for a variety of systems over the last few decades. 
Doguc et al. proposed a new fault diagnosis method based on the real-
time reliability analysis [7]. Bayesian network (BN) was used to cal-
culate the system reliability, and the real-time system reliability was 
monitored and compared with the previous values. If the deviations 
exceeded the set threshold, a heuristic efficient algorithm was used to 
locate the failed component which had the greatest changes between 
the prior probability and posterior probability. In the literature [3], a 
real-time fault diagnosis method for complex systems using object-
oriented BN was proposed. It included an off-line BN construction 
phase and an on-line fault diagnosis phase. However, the construc-
tion of BN model requires a large amount of fault data. In [5], a fault 
diagnosis approach based on the fuzzy neural network and fault tree 
was proposed. Fuzzy neural network was used to train the relation-
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This paper presents an information fusion method to diagnose system fault based on dynamic fault tree (DFT) analysis and 
dynamic evidential network (DEN). In the proposed method, firstly, it uses a DFT to describe the dynamic fault characteristics 
and evaluates the failure rate of components using interval numbers to deal with the epistemic uncertainty. Secondly, qualitative 
analysis of a DFT is to generate the characteristic function via a traditional zero-suppressed binary decision diagram, while 
quantitative analysis is to calculate some importance measures by mapping a DFT into a DEN. Thirdly, these reliability results are 
updated according to sensors data and used to design a novel diagnostic algorithm to optimize system diagnosis. Furthermore, a 
diagnostic decision tree (DDT) is obtained to guide the maintenance workers to recover the system. Finally, the performance of the 
proposed method is evaluated by applying it to a train-ground wireless communication system. The results of simulation analysis 
show the feasibility and effectiveness of this methodology.

Keywords:	 dynamic fault tree, dynamic evidential network, interval numbers, sensors data, diagnostic impor-
tance factor.

W artykule przedstawiono metodę fuzji informacji służącą do diagnozowania błędów systemu w oparciu o analizę dynamicznego 
drzewa błędów (DFT) oraz dynamiczną sieć dowodową (DEN). W proponowanej metodzie, pierwszym krokiem jest wykorzystanie 
DFT do opisania dynamicznych charakterystyk błędów oraz ocena intensywności uszkodzeń komponentów przy użyciu liczb prze-
działowych, która rozwiązuje problem niepewności epistemicznej. Krok drugi stanowi jakościowa analiza DFT, która polega na 
wygenerowaniu funkcji charakterystycznej za pomocą tradycyjnego binarnego diagramu decyzyjnego typu "zero-suppressed" (w 
którym zostały wyeliminowane wszystkie węzły, których krawędź „1” prowadzi do liścia „0”), oraz analiza ilościowa polegająca 
na obliczeniu pewnych miar ważności poprzez odwzorowanie DFT w DEN. W kroku trzecim, otrzymane wyniki niezawodnościo-
we aktualizuje się zgodnie z danymi z czujników a następnie wykorzystuje do stworzenia nowego algorytmu diagnostycznego do 
optymalizacji diagnostyki systemu. Powstaje diagnostyczne drzewo decyzyjne (DDT), które stanowi dla pracowników utrzymania 
ruchu  wytyczną w procesie odzyskiwania systemu. Działanie proponowanej metody oceniano poprzez zastosowanie jej do diagno-
styki systemu łączności radiowej pociąg–ziemia. Wyniki analizy symulacyjnej wskazują na możliwość praktycznego wykorzystania 
i skuteczność omawianej metodologii.

Słowa kluczowe:	 dynamiczne drzewo błędów, dynamiczna sieć dowodowa, liczby przedziałowe, dane z czujni-
ków, czynnik ważności diagnostycznej.
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ship between faults and symptoms. Fault tree was used to describe 
the logical relationship between faults and symptoms. In [13], a new 
method was proposed to diagnose the bearing fault using evidence 
network and support vector machine. The fault model construction 
was established using a data-driven method, and the evidence theory 
was used to solve the conflicting results from different layer mod-
els to increase the diagnosis accuracy. However, the above methods 
are based on the data-driven fault method which needed lots of fault 
data and cannot deal with the epistemic uncertainty. A fault diagno-
sis method for safety instrumentation system based on the fault tree 
and BN was proposed [6]. It used the static fault tree to construct the 
fault model of safety instrument system and mapped the fault tree 
into BN to calculate the importance measure which was used to de-
sign the diagnosis algorithm. Nevertheless, this method is unable to 
describe the dynamic fault characteristics and fails to deal with the 
epistemic uncertainty. In work of [1], DFT was introduced to model 
the dynamic fault behaviours and diagnostic importance factor (DIF) 
was calculated to determine the diagnostic sequence. However, this 
method determined the diagnosis sequence only by components’ DIF, 
and usually caused minimal cut sets ((MCS)) with a smaller DIF to be 
checked first, thereby influencing the diagnosis result. Tao et al. pre-
sented an improved fault diagnosis method which took components’ 
DIF and MCS’s DIF into account to avoid that case [23]. In order to 
improve the diagnosis efficiency, Assaf et al. proposed a method to 
incorporate the evidence information from sensors into the diagnos-
tic process based on the DFT [2]. However, the solution for DFT is 
based on Markov chains, which is ineffective in handing large DFT 
and modelling power capabilities. Furthermore, it cannot update the 
reliability results according to the evidence data from sensors, which 
affects the diagnostic efficiency. Therefore, Duan et al. presented an 
efficient diagnostic algorithm which used DFT to establish a system 
failure model and calculated reliability parameters using a discrete 
time Bayesian network (DTBN) [8]. This approach not only can avoid 
the state space explosion, but also can incorporate sensor information 
to update reliability results. Nevertheless, DTBN is an approximate 
method to solve DFT and there is a contradiction between the ac-
curacy and computational complexity. Furthermore, these diagnosis 
methods are usually assumed that the failure rates of the components 
are expressed in crisp values describing their reliability characteristics 
and cannot cope with the epistemic uncertainty. So, a fuzzy DFT anal-
ysis was introduced, which can deal with the uncertainty and model 
the dynamic fault characteristics [12, 17]. Nevertheless, the solution 
for the fuzzy DFT was still based on the Markov chains. To overcome 
these shortcomings, a new fault diagnosis algorithm based on fuzzy 
set and DFT analysis was proposed [10]. The fuzzy information ob-
tained by fuzzy set theory and domain expert was transformed into 
quantitative information to obtain the fuzzy failure rates of compo-
nents. DTBN was used for quantitative analysis. Nevertheless, it is 
usually difficult to determine the corresponding membership function 
of each language value. To this end, Duan et al. proposed a new fault 
diagnosis for complex systems based on dynamic evidential network 
and multi-attribute decision making [11]. It used interval numbers to 
express the failure rates of the basic events and obtained the optimal 
diagnosis sequences based multi-attribute decision making with inter-
val numbers. However, this method failed to incorporate the sensors 
data to optimize the diagnosis process.

In summary, fault diagnosis methods based on reliability analysis 
have some following limitations: 

Traditional fault diagnosis methods based on reliability analysis (1)	
generally use a static fault tree or DFT to construct fault model 
and assume that the failure rates of all events are crisp values, 
which cannot deal with epistemic uncertainty. Although some 
researchers put forward the possibility theory [21, 25], fuzzy 
set theory [4, 15], imprecise probability [18], interval analysis 
[27] and evidence theory [28], these theories were only used for 

the reliability analysis and risk assessment and were not further 
applied to the fault diagnosis. Furthermore, Markov chains and 
DTBN are usually used to solve DFT. Markov chains have a 
bad state space explosion problem and the inability to update 
the posterior probability of the component based on sensors 
data. The DTBN based solution for DFT has the contradiction 
between computational accuracy and computational complex-
ity. That is, its computational accuracy is related to the size of 
time granularity n. As n increases, the conditional probability 
table has an exponential growth [26]. Although the solution 
proposed in [16] can solve the problem of calculation accuracy 
to a certain extent, it cannot fuse the sensors information for 
backward reasoning.
From the aspect of sensors information fusion, Traditional (2)	
method appends a sensor layer for capturing evidence onto the 
DFT without impacting the reliability analysis, and the sensor 
layer uses static gates to represent evidence information. How-
ever, evidence information is only used to update qualitative 
information to reduce the number of suspected MCS and fails 
to update the quantitative information, thus unable to reflect 
the contribution of components to the system failure.
In the view of the diagnosis algorithm, the algorithms based on (3)	
reliability analysis generally only take the importance meas-
ures or posterior probability of components into account [1, 9]. 
Furthermore, the importance measures are usually crisp values 
and cannot be used to make decisions under uncertainty.

Motivated by the problems motioned above, this paper proposes 
an information fusion method to diagnose system fault based on DFT 
and DEN. DFT is used to establish the system fault model to describe 
the dynamic fault characteristics. Interval numbers are used to de-
scribe the failure rate of components to deal with epistemic uncer-
tainty. Furthermore, an efficient zero-suppressed binary decisions dia-
grams is used to obtain all MCSs, and a DFT is mapped into a DEN to 
calculate the reliability parameters. In addition, evidence information 
from sensors is incorporated to update the qualitative information and 
quantitative parameters, which are used to design the fault diagnosis 
algorithm. Finally, a train-ground wireless communication system is 
given to demonstrate the efficiency of this proposed method.

The remainder of this article is organized as follows. Section 2 
presents the model construction and qualitative analysis of DFT. Sec-
tion 3 introduces the dynamic evidence network and provides a quan-
titative analysis method by mapping a DFT to a DEN. A novel ap-
proach is proposed to incorporate the evidence information to update 
the reliability results, and an efficient diagnosis algorithm is given in 
Section 4. Section 5 is devoted to a simple illustration example of the 
proposed approach. Some conclusions and future research recommen-
dations are given in the final section. 

2. DFT

2.1.	 Model Construction of DFT

Fault tree is a deductive method to decide the potential causes that 
may cause the occurrence of a predefined undesired event, generally 
denoted as the top event. DFT extends a static fault tree to describe the 
dynamic failure behaviours such as priorities of failure events, spares, 
and sequence-dependent events. Dynamic gates in DFT include the 
priority AND gate (PAND), the functional dependency gate (FDEP), 
the sequence enforcing gate (SEQ), the cold, hot, and warm spare 
gates (CSP, HSP, WSP). The model construction of the fault tree usu-
ally requires an in depth knowledge of the system and its components. 
It includes the construction of a network topology and the failure rates 
estimation of components. The former can resort to fault mode and 
effect analysis and the latter needs to obtain lots of fault data, which 
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is almost impossible to estimate precisely the failure rates of the basic 
events in the practical engineering application. In this paper, interval 
numbers are used to describe the failure rates of the basic events based 
on the expert elicitation and some data sheet at the design stage. 

2.2.	 Qualitative analysis of a DFT

The qualitative analysis of a fault tree can be used to obtain the 
MCS. Algebraic simplification is the most effective method to solve 
MCS, but it is not suitable for solving DFT. Zero-suppressed binary 
decisions diagrams, introduced by Tang, separate timing constraints 
and logic constraints and convert a DFT into a static fault tree [24]. 
This algorithm generates the MCS of the corresponding static fault 
tree using several set operations and then it can be expanded into min-
imal cut sequences if we consider the timing constraints.

Let 1S , 2S  be the input of MCS for AND gate and MCS for OR 
gate respectively, several set operations are as follows:
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3
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,
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= =





 

	 (1)

where D, Sc, U, and P respectively represent set difference, set inter-
section, set union, and set product. MCSOR and MCSAND are the 
output of MCS- OR and MCS- AND respectively.

The MCS generation algorithm is implemented recursively during 
the depth-first left-most traversal of a fault tree. Firstly, it generates 
the MCS of the inputs of a connection gate, and then executes some 
operations to combine the MCS of the inputs into the MCS of the out-
put of the connection gate. Finally, all the minimal cut sequences from 
the MCS can be obtained by considering the timing constraints [24].

2.3.	 Quantitative analysis of a DFT

Quantitative analysis of a DFT is mainly to calculate the system 
reliability and some importance measures. DIF is the most frequently 
used importance measure and is also the cornerstone of diagnosis 
method based on reliability. From a diagnostic point of view, it al-
lows us to discriminate between components by their importance. It is 
well known to us all that components with a larger DIF value should 
be diagnosed first. It can assure a minimal number of system checks 
while bringing back the system. Reliability parameters are calculated 
by converting a DFT into a DEN which is introduced in Section 3.

3. DEN

3.1.	 EN

D-S evidence theory has a unique ability in the expression of 
epistemic uncertainties. The evidence theory can be well compatible 
with the theory of probability. EN consists of BN and D-S evidence 
theory and includes both advantages [14]. It is a popular analysis tool 
for representing and managing epistemic uncertainties. An EN is a 
directed acyclic graph (DAG) used to represent system’s uncertain 
knowledge and system logic in artificial intelligence. An EN is de-
fined as ,EN G P=< > , where ,G N A=< >  represents a network 
graph and 1 2{ , , , }kN N N N=   represents a set of nodes. A node can 
be a basic variable or an abstraction of a system or component, such as 
system reliability, component status. A is a set of arcs, which indicate 
direct conditional relations between the connected nodes. P represents 
some network parameters in EN. Each network parameter represents 
the belief distributions that are distributed to a node, and each node 

iX N∈ has a corresponding conditional belief table. The parent node 

of node iX  is set to ( )iPa X  and their relationship is expressed in the 

formula ( | ( ))i iP X Pa X . 

3.2.	 DEN

A DEN extends an EN with adding a temporal dimension. This new 
dimension is managed by defining different nodes to model variables 
with respect to different time slices. A DEN includes an initial network 
and some temporal transition networks. Each time slice corresponds 
to a static EN, and the time slices are made up of a directed acyclic 
graph ,T T TG V E=< > and the corresponding conditional probabilities. 
The VT and ET are respectively nodes of time T and directed arcs. A 
directed arc links two variables belonging to different time slices and 

tmp
TE is used to denote the temporal transition network of time slices. 

Then tmp
TE can be determined by:

	 1 0 0{( , ) | , },tmp
T TTE a b a V b V T T T N T−= ∈ ∈ ≤ ≤ + ∆ 	 (2)

where T0 is an initial network.

In the DEN model, TG  depends solely upon the present state and 
the previous state. Thus, the following equation is obtained:

	 0
( | ,..., ) ( | )T T T T T T TP G G G P G G−∆ −∆= 	 (3)

In addition, we define these impacts as transition-belief masses 
between the focal elements of the variable at time step k and those at 
time step k+1 and the CBT relative to inter-time slices is calculated 
by Equation 4:
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      (4)

3.3.	 System reliability model of DEN

In evidence theory, { , }i iW FΘ = is the knowledge framework of 
the component i and the focal elements are defined by:

	 2 {{ },{ },{ },{ , }}i i i iW F W FΘ = ∅ 	 (5)

where{ }iW and{ }iF denote the working state and failure state respec-
tively. The state of { , }i iW F corresponds to the epistemic uncertainty.

Belief measure (Bel) defines the lower bound of the probabilities 
that the focal element exists, and plausibility measure (Pl) defines 
the upper bound of the probabilities that the focal element exists. The 
basic belief assignment on the system state expresses an epistemic 
uncertainty, where Bel and Pl measures are not equal and bound the 
system reliability. Therefore, the basic probability assignment (BPA) 
of component i can be computed as:

	

({ }) ({ })
({ }) 1 ({ })
({ , }) ({ }) ({ })

i i

i i

i i i i

m W Bel W
m F Pl W
m W F Pl W Bel F

=
 = −
 = −

	 (6)

Presumably, the upper and lower bounds of the component’s fail-
ure probability is equivalent to the BPA in the DEN:
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({ }) 1 ( )
({ }) ( )

({ , }) ( ) ( )

i

i

i i

m W P x
m F P x

m W F P x P x

 = − =


= −

	 (7)

where ({ }) ( )iBel F P x= and ({ }) ( )iPl F P x= .

3.4.	 DFT analysis based on DEN

3.4.1.	 Converting a static logic gate into a DEN

Static logic gates mainly include three gates, AND gate, OR gate 
and voting gate. This section takes an OR gate for example and pro-
vides the schemes to map an OR gate into a DEN. When any of the 
input components Xi (i=1,…, n) of an OR gate fails, the output of 
the gate fails too. Fig. 1 shows an OR gate and the equivalent DEN. 
Table 1 gives the conditional probabilities of node A (T+ΔT) in the 
DEN. Equation 8 gives the conditional probabilities of output node 
E (T+ΔT). A more detailed description of this work can be found in 
[20].

Fig. 1. An OR gate and the equivalent DEN
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     (8)

3.4.2.	 Converting a dynamic logic gate into a DEN

Some dynamic logic gates are introduced to model the functional 
and sequential in the DFT. These logic gates include PAND, SEQ, 
FDEP and spare gates. An FDEP gate will be used to describe how the 
dynamic logic gates are mapped into DEN. An FDEP gate includes 
a trigger event and some dependent basic events. The trigger event 
can be a basic event or an output of another gate in the DFT. The oc-
currence of a trigger event will force all basic events to occur, which 

means all basic events functionally depend upon the trigger event. 
Fig. 2 shows an FDEP gate and the equivalent DEN. Table 2 and 
Table 3 show the conditional probabilities of the node A(T+ΔT) and 
E(T+ΔT) respectively.

3.4.3.	 Calculating reliability results

After DFT model of a system is built, it can be mapped into the 
equivalent DEN using the approach mentioned above. Reliability re-
sults of system can be obtained by resorting to the DEN inference 
algorithm. Reliability parameters mainly include system unreliability 
and DIF, which can be used to develop a diagnosis algorithm.

The unreliability of a system is calculated by the following equa-
tion:

	 [ , ] [ ({ })   ({ })]S S S S SP P P Bel F Pl F= = 	 (9)

where [ ({ }), ({ })]S SBel F Pl F  represents the failure probability of a 
system.

DIF is usually defined as the probability that a basic event has 
occurred given that the top event has also occurred. The DIF of a 
component i is given by:

	 | |( | ) [ ({ }), ({ })]i i S i SDIF P i S Bel F Pl F= = 	 (10)

Table 2.	 The conditional probabilities of the node A (T+ΔT)

T(T+ΔT) A(T)
A(T+ΔT)

{W} {F} {W,F}

{W} {W} mA(W) mA(F) mA(W,F)

{W} {F} 0 1 0

{W} {W,F} 0 0 1

{F} {W} 0 1 0

{F} {F} 0 1 0

{F} {W,F} 0 1 0

{W,F} {W} 0 0 1

{W,F} {F} 0 1 0

{W,F} {W,F} 0 0 1

Table 3.	 The conditional probabilities of the node E(T+ΔT).

T(T+ΔT)
E(T+ΔT)

{W} {F} {W,F}

{W} 1 0 0

{F} 0 1 0

{W,F} 0 0 1

Table 1.	 The conditional probabilities of node A (T+ΔT). 

A(T)
A(T+ΔT)

{W} {F} {W,F}

{W} mA(W) mA(F) mA(W,F)

{F} 0 1 0

{W,F} 0 mA(F) 1- mA(F)

Fig. 2. An FDEP gate and the equivalent DEN
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where i is a component in the system S; ( | )P i S is the probability that 
the basic event i has occurred given the top event has occurred.

Similarly, the DIF of a MCS n is defined by:

	
( )

( )=
( )n

n
MCS n

P MCS
DIF P MCS S

P S
= 	 (11)

where ( )P S is the unreliability of the system S; ( )nP MCS S is the fail-
ure probability that the MCS n has occurred given the top event has 
occurred.

For convenience, we calculate the value ( )nP MCS  instead of 

nMCSDIF  and use it to design the diagnosis algorithm in the following 
section.

3.5.	 Importance sorting using possibility-based NSG ranking 
approach

Based on above analysis, we can obtain the interval value of DIF 
which can be used to develop an efficient diagnosis algorithm in order 
to reduce the diagnosis cost. As is known to all, components with a 
larger DIF are more important from a diagnostic point of view. Thus, 
the importance ranking of components will be very important for de-
termining a diagnosis sequence. Nevertheless, these interval values 
are not sufficient to rank components and should be converted into a 
probability measure. In this paper, a possibility-based NSG ranking 
method, developed by Nakahara et al. is used to rank DIF of com-
ponents expressed by interval numbers [19, 22]. This method can be 
used to compare the DIF of components to provide a guidance for 
system diagnosis.

For interval numbers [ , ]a a a− +=  and [ , ]b b b− += , l(a) and 
l(b) respectively denote the lengths of the intervals [ , ]a a a− +=  and

[ , ]b b b− += , it calculated as follows:

	 ( ) , ( )l a a a l b b b+ − + −= − = − 	 (12)

Then the possibility of [ ] [ ]a b≥ can be defined as:

	

([ ] [ ]) min{0,1 max( ,0)}
( ) ( )

1                         

                            
( ) ( )

0                        

a bp a b
l a l b

a b

a b a b and a b
l a l b

a b

+ −

− +

+ −
+ − − +

+ −

−
≥ = −

+

 ≥

 −

= > <
+

 ≤

	 (13)

A possibility-based NSG ranking method includes the following 
steps.

Step 1: For a set of interval numbers [ , ]   =1,2, ,i i ia a a i n− +=  , 
compare them with each other, and then the corresponding possibility

( )ijp p a b= >
 
can be obtained. So we can establish the probability 

matrix ( )ij n nP p ×= , which is given by:

	

11 12 1

21 22 2

1 2

n

n

n n nn

p p p
p p p

P

p p p

 
 
 =  
  
 





   



	 (14)

Step 2: Denote λi ij
j

n
p=

=
∑

1
 as the row sum of the possibility ma-

trix P and λ λ λ λ= ( )1 2       n
T  as the corresponding row sum vec-

tor.
Step 3: Calculate the ranking vector ω ω=( )i  is given by:

	 ω λi in n
n i n=

−
+ − =

1
1 2

1 1 2
( )

( ) ,     	 (15)

According to the ranking vector of the possibility matrix P, the 
interval numbers [ , ]   =1,2, ,i i ia a a i n− +=   can be sorted based on 
the value of ωi .

4. Fault Diagnosis Method based on Reliability Analysis 
and Sensors data

4.1.	 Model construction of diagnostic sensors

When a system fails, usually several evidence information from 
sensors can be observed too, and this may be utilized to improve the 
efficiency of the diagnosis algorithm. In general, the more the number 
of sensors used to monitor the system, the higher the diagnostic effi-
ciency of the system. However, too many sensors will increase system 
costs on the one hand, but on the other hand, it will reduce the reli-
ability of the diagnostic system. So a tradeoff between the good points 
against the bad should be taken into account. Besides, sensors might 
fail and false information can misguide the diagnosis process. For 
simplicity, we assume that sensors never fail in the paper. To optimize 
the diagnosis process, a diagnostic sensors model is constructed to up-
date the qualitative and quantitative information. As we all know, the 
DEN created from DFT has no evidence nodes representing the evi-
dence information, thus, we need to add them in the DEN. Evidence 
nodes in the DEN provide links connecting it with the component in 
the DEN, which are monitored by sensors. The links are directed from 
the component to the evidence nodes. Evidence nodes in the DEN cre-
ate a conditional probability table using the probability of producing 
the observation results. This diagnostic sensors model does not affect 
the system reliability analysis and can update the qualitative informa-
tion and quantitative parameters according to sensors data.

4.2.	 Incorporating sensors data

4.2.1.	 Updating the system characteristic function

If sensors detect some failed components, we can use this evi-
dence information to minimize the number of the diagnosed MCS. 
Since, examining a cut set that caused the system to fail then fixing 
the failed components in that cut set should recover the system, we 
can increase the efficiency of fault diagnosis by reducing the number 
of cut sets examined. The cut sets under evidence (CUE) is the set of 
all essential MCS obtained after evidence information removes some 
unsuspected cut sets. We can use evidence information from sensors 
to simplify the characteristic function of the system in order to obtain 
the CUE function using the algorithm in [2].

4.2.2.	 Updating DIF

In addition, we can use the evidence information from sensors to 
update DIF, which reflects objectively the contribution to the system 
failure. The DIF of the components under the evidence information 
conditions can be calculated using the Equation (16). Calculating DIF 
is very simple. We just input the corresponding evidence information 
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to the DEN and obtain the DIF of components and CUE using the 
inference algorithm:

	 ( , , )( , )
( )i

E

P i E SDIF P i S E
P S DIF

′ = = 	 (16)

where i, S and E represent a component, system and evidence infor-
mation, respectively.

4.3.	 Fault diagnosis algorithm

The aim of fault diagnosis is to obtain the optimal check sequence 
to locate the fault as fast as possible using an efficient diagnosis algo-
rithm. As it is known to all, the direct cause of the system failure is the 
failure of a CUE. So, we should check CUE one by one to locate the 
failed component in the system. Only when we finish checking a CUE 
can we do next. The sequence by which CUE is diagnosed depends 
on the corresponding DIF, while the sequence of components in the 
same CUE is determined by their DIF. The CUE with a larger DIF is 
checked first. Accordingly, the component with a larger DIF in a CUE 
is checked first. It can assure a minimal number of system checks 
while bringing the system back. The fault diagnosis algorithm, which 
incorporates sensors data, is as follows:

Step 1. List all CUEs and rank them according to their DIF. 
Step 2. Select the CUE with a highest DIF value and diagnose the 

component X with a highest DIF in the same CUE.
Step 3. Split all CUEs into those with X and those without. 

If a)	 X has failed test, we take all CUEs that include X
Diagnose all CUEs and the CUE with 	
a higher DIF is checked first.
The component with a larger DIF in 	
the same CUE is checked first.

If b)	 X has not failed test, we take the other 
CUEs

Select the CUE untested with a 	
highest DIF value.
And recursively repeat Step2 - 	
Step3.

4.4.	 Evaluation of diagnosis algorithm

The diagnosis algorithm can easily be de-
scribed in the graphical DDT, which can help 
us recognize the failed components with a map. 
It is a directed acyclic graph composed of circu-
lar nodes and arcs linking parent nodes to child 
nodes. A node represents a component being 
tested. Arcs point to the next component to be 
tested; right arcs point to components within 
the same cutest as the parent node, and left arcs 
point to components which are not in the same 
cutest as the parent node. Moreover, when diag-
nostician reaches a node and tests the compo-
nent at the node, the test either fails or passes. 
If the test fails, then the right arc is traversed in-
dicating the need to repair the tested component 
in the parent node. If a test passes, then the left 
arc is traversed indicating that the cut sets which 
include the tested component in the parent node 
have not failed.

There are many indicators to evaluate the 
fault diagnosis algorithm. In this paper, we can 
evaluate the diagnostic efficiency with the help 
of the DDT. Traditional evaluation measures 
only take the test cost or the failure probability 

of components into account, and neglect the qualitative information 
and the importance factors. Thus, we use expected diagnostic cost 
(EDC) which incorporates the structure information, DIF and test cost 
into one measure for predicting diagnosis cost. This evaluation index 
takes the diagnosis accuracy as well as the diagnosis cost into account 
and also considers the relationship between component failure and 
system failure. Generally, the diagnostic cost is lower, the diagnostic 
approach is more efficient. EDC can be computed by:

	
1 1

,
i

i j

mn
CUE i i c

i j
EDC DIF cp cp t

= =
= =∑ ∑ 	 (17)

where 
iCUEDIF  is the DIF of the ith CUE; cpi is the sum of all test 

cost from the top node to the ith CUE’s leaf node; jct  is the test cost 
of the node cj.

5. A numerical example
Train-ground wireless communication system is a key subsystem 

of urban rail transit, and its reliability has been improved by the ap-
plication of high technologies to ensure safe operation. Once break-
ing down, less causes the operation performance drop, more leads to 
a disaster. Therefore, an efficient diagnosis strategy should be taken 
to restore normal operation as soon as possible. A DFT model of a 
train-ground wireless communication system is shown in Fig.3. It is 
assumed that all components have the exponential distribution and 
interval failure rates of components expressed in interval values are 
shown in Table 4.

Table 4.	 Failure rates of components are expressed in interval numbers

Components Interval failure rates Components Interval failure rates

X1 [4.22e-6, 5.28e-6] X8,X9 [5.49e-6, 6.71e-6]

X2 [5.94e-6, 7.26e-6] X10,X11 [3.15e-5, 3.85e-5]

X3 [4.86e-5, 5.94e-5] X12,X13 [6.12e-5, 7.48e-5]

X4,X5 [3.78e-5, 4.62e-5] X14 [5.04e-5, 6.11e-5]

X6,X7 [6.48e-5, 7.92e-5] X15 [5.04e-5, 6.11e-5]

Fig. 3. DFT model of train-ground wireless communication system
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Through the qualitative analysis of DFT mentioned above, the 
system characteristic function (the sum of all MCS) of train-ground 
wireless communication system is obtained:

1 2 3 4 5 4 7 4 9 6 5 6 7 6 9
       8 5 8 7 8 9 10 11 10 13 10 15 12 11
       12 13  12 15 14 11 14 13 14 15

F X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X
X X X X X X X X X X

= + + + + + + + + +
+ + + + + + +
+ + + +

The DFT is mapped into a corresponding DEN for quantitative 
analysis. Assuming the task time T = 1000 h, the probability of sys-
tem failure can be obtained using the inference algorithm and it is 
[0.08293, 0.10714]. In addition, the DIF of all components and MCSs 
can be calculated shown in Table 5 and Table 6 respectively.

A possibility-based NSG sorting method is used to rank the DIF 
of components and the ranking vectors ωi of matrices P can be com-
puted as:

ωi=(0.0333, 0.0402, 0.1, 0.0544, 0.0544, 0.0873, 0.0873, 0.0643, 
0.0643, 0.0446, 0.0446, 0.0889, 0.0889, 0.0738, 0.0738)

So, the order of the components’ DIF is obtained: 

3 12( 13) 6( 7) 14( 15) 8( 9) 4( 5) 10( 11) 2 1X X X X X X X X X X X X X X X> > > > > > > >

Similarly, the ranking of all MCSs can also be obtained:

( )
( ) ( )

3 6. 7 12. 13 12. 15 13. 14 14. 15 2 6. 9( 8. 7)

1 4. 7( 6. 5) 10. 13 12. 11 10. 15 14. 11 8. 9
8. 5( 4. 9) 4. 5 10. 11

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X
X X X X X X X X

> > > > > >

> > > > >

> > >  

We assume that a sensor monitors X6 and detects that it is in a 
work state. We can use this evidence information to simplify the char-
acteristic function and obtain an updated system characteristic func-
tion:

1 2 3 4 5 4 7 4 9 8 5 8 7
          8 9 10 11 10 13 10 15 12 11
          12 13  12 15 14 11 14 13 14 15

CUEF X X X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X

= + + + + + + + +

+ + + + +
+ + + +

In addition, this evidence information can be input into the DEN 
and the corresponding evidence is as follows:

	 ( 6 { }) 1, ( 6 { , }) ( 6 { }) 0P X W P X W F P X F= = = = = = 	 (18)

Using the DEN reasoning algorithm, the updating DIFs of compo-
nents and CUEs are shown in Table 7 and Table 8 respectively.

Using the sorting method, we can get the order of components:

( ) ( ) ( )3 12 13 14 15 7 2 10 11 1 9 5 8 4X X X X X X X X X X X X X X> > > > > > > > > >

Based on the proposed diagnosis algorithm, we can get the DDT 
of train-ground wireless communication system without sensors in-
formation, shown in Fig. 4 and the corresponding DDT which incor-
porates sensors information into diagnosis process shown in Fig. 5.

Since the failure probability of CUE is expressed as an interval 
number, it cannot be directly used to calculate EDC. For convenience, 

assuming that all components have a unit test cost 
and test cost of components is independent, we cal-
culate EDC using the median of the interval number 
in Equation (17). Table 9 shows the EDC of differ-
ent diagnostic algorithms and indicates the proposed 
method is more efficient than others.

4. Conclusion

In this paper, a novel fault diagnosis approach 
for complex systems is presented based on DFT 
analysis and DEN, which aims to deal with two im-
portant issues that arise in engineering applications, 
such as failure dependency and epistemic uncertain-
ty. For the challenge of failure dependency, a DFT 
is used to describe the dynamic fault behaviours. 
For the challenge of the epistemic uncertainty, the 
failure rates of components in complex systems are 

Table 5.	 DIFs of all components

Components DIF of components Components DIF of components

X1 [0.0508,0.0518] X8,X9 [0.0857,0.0939]

X2 [0.0709,0.0722] X10,X11 [0.0708,0.0756]

X3 [0.5681,0.5727] X12,X13 [0.2012,0.2156]

X4,X5 [0.0751,0.0822] X14 [0.1788,0.1914]

X6,X7 [0.1963,0.2148] X15 [0.1788,0.1914]

Table 6.	 DIFs of all MCSs

MCSs DIF of MCSs MCSs DIF of MCSs MCSs DIF of MCSs

X1 [0.0393,0.0635] X6.X7 [0.0877,0.1675] X10.X15 [0.0227,0.0432]

X2 [0.0553,0.0873] X6.X9 [0.0384,0.0732] X12.X11 [0.0255,0.0488]

X3 [0.4428,0.6954] X8.X5 [0.0147,0.0281] X12.X13 [0.0725,0.1383]

X4.X5 [0.0129,0.0246] X8.X7 [0.0384,0.0732] X12.X15 [0.0644,0.1224]

X4.X7 [0.0336,0.0642] X8.X9 [0.0167,0.0321] X14.X11 [0.0227,0.0432]

X4.X9 [0.0147,0.0281] X10.X11 [0.0090,0.0172] X14.X13 [0.0644,0.1224]

X6.X5 [0.0336,0.0642] X10.X13 [0.0255,0.0488] X14.X15 [0.0572,0.1084]

Fig. 4.	 A DDT of train-ground wireless communication system without sen-
sors information.
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expressed in interval numbers. Furthermore, qualitative analysis of a 
DFT is to generate the characteristic function via a zero-suppressed 
binary decision diagram, while quantitative analysis is to calculate 
some importance measures by converting a DFT into a DEN. In ad-
dition, these reliability results are updated according to the evidence 
information from sensors and used to design a novel algorithm to im-
prove the diagnosis efficiency. Finally, a real example is given to dem-
onstrate the feasibility and efficiency of the proposed method. This 
method takes full advantages of both DFT for modelling and DEN 
for the uncertainty inference, which is especially suitable to diagnose 
complex systems.

In the future work, we will focus on how the reliability of sensors 
influences the diagnosis efficiency.
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Table 7.	 The updating DIFs of components

Components DIF of components Components DIF of components

X1 [0.0571, 0.0581] X8 [0.0125, 0.0137]

X2 [0.0797, 0.0809] X9 [0.0449, 0.0541]

X3 [0.6381, 0.6420] X10,X11 [0.0762, 0.0807]

X4 [0    ,     0] X12,X13 [0.2165, 0.2302]

X5 [0.0394, 0.0474] X14 [0.1923, 0.2044]

X7 [0.1030, 0.1237] X15 [0.1923, 0.2044]

Table 8.	 The updating DIFs of CUEs

CUEs DIF of CUEs CUEs DIF of CUEs CUEs DIF of CUEs

X1 [0.0393,0.0635] X8.X5 [0.0147,0.0281] X10.X15 [0.0227,0.0432]

X2 [0.0553,0.0873] X8.X7 [0.0384,0.0732] X12.X11 [0.0255,0.0488]

X3 [0.4428,0.6954] X8.X9 [0.0167,0.0321] X12.X13 [0.0725,0.1383]

X4.X5 [0.0129,0.0246] X10.X11 [0.0090,0.0172] X14.X11 [0.0227,0.0432]

X4.X7 [0.0336,0.0642] X10.X13 [0.0255,0.0488] X14.X13 [0.0644,0.1224]

X4.X9 [0.0147,0.0281] X12.X15 [0.0644,0.1224] X14.X15 [0.0572,0.1084]

Fig. 5.	 A corresponding DDT which incorporates sensors information into 
diagnosis process.

Table 9.	 EDC of Different diagnostic algorithms

Diagnostic algorithms EDC

A diagnostic method proposed by Assaf [1] 7.638

A diagnostic method without sensors information 7.211

A diagnostic method with incorporating sensors information 5.519
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